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Additive Runge-Kutta Methods for Stiff Ordinary 
Differential Equations 

By G. J. Cooper and A. Sayfy 

Abstract. Certain pairs of Runge-Kutta methods may be used additively to solve a system of n 
differential equations x' = J(t)x + g(t, x). Pairs of methods, of order p < 4, where one 
method is semiexplicit and A-stable and the other method is explicit, are obtained. These 
methods require the LU factorization of one n X n matrix, and p evaluations of g, in each 
step. It is shown that such methods have a stability property which is similar to a stability 
property of perturbed linear differential equations. 

1. Introduction. In a recent article [2] the authors showed that certain pairs of 
methods may be used in an additive fashion to solve an initial value problem for a 
system of n differential equations 

x' = f(t, x), x(a) = xo, a - t - b, 

where, for a particular step length h, a given additive method is associated with a 
sequence of decompositions 

{ f = f(m) + f2(m)} 

In this article we consider the case where {ff(m)} is a sequence of linear mappings so 
that 

(1.1) f(t, x) = J(m)(t)x + g(m)(t, x), m 1,2,3,... 

and, in particular, it is assumed that, for some norm on Rn, 

||g(m)(t, u) - g(m)(t, v)jj --- Lllu- vll Vu, v G Rn, t G I, 

for m = 1,2, 3,..., where [a, b] is contained in the open interval I. It is also 
supposed that each element of {J(m)} and {g(m)} is continuous on I. Other 
assumptions, which are needed to obtain order conditions for additive methods, are 
detailed in the previous article [2]. 

The aim is to obtain additive methods suitable for solving stiff systems of 
differential equations. Although f may be given directly in the form (1.1), it is 
necessary to choose the sequence of decompositions so that the Lipschitz constant L 
is small. Usually {J(m)} is chosen as an approximation to the Jacobian of f evaluated 
at some sequence of computed values. The elements of {J(m)} are often chosen to be 
independent of t. We consider pairs of Runge-Kutta methods where one method, 
which is A-stable and semiexplicit, is applied to the linear (stiff) part of the 
decompositions. The other method, which is explicit, is applied to the nonlinear part. 
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In the previous article [2] the authors gave a few examples of low order additive 
methods of this type. 

An additive method consists of a pair of methods, an (A, BI) method and an 
(A, B2) method, of the type described by Butcher [1], and is represented by the triple 
of real s X s matrices (A, B1, B2). In this article we consider only methods of 
Runge-Kutta type where 

O ... 0 1 

O 0 1 
O ... 0 1 

Such methods are represented by an array p i B1 j B2 j c or 

Pi bil b12 ... bls fil #12 ... 
#IS cl 

P2 b21 b22 b2s I21 #22 #2s C2 

PS bsI bs2 ... bss Psl 18s2 ... Pss Cs 

and it is assumed that 
s s 

(1.2) ci - :E bij = 2 gii, i = 1,25,...,s. 
j=1 j=1 

A method consists of a sequence of steps, with step length h, where each step 
contains s stages, 

(1.3) y(m) =ys(m) + h 2 bijJ(m)(tm, + hcj)y(m) 
j=1 

+h 3 ,ij.g(m)(tm , + hC yJ(m) ) 
j=1 

for i 1, 2,. .. . ,s and m = 1, 2, 3 .... The consistency vector c defines the points at 
which the method gives approximations to the solution of the initial value problem, 
and the order vector p gives the order of convergence of each stage. That is, suppose 
the numerical integration is over the finite interval [a, b], and let tm a + mh, 
m 0 O, 1,. . , M, where tM = b. Then there are constants K, C and H such that, for 
h H, 

ilyi(m) - x(tm_ -l + hci)|s Kh Pi i 1, 25, S ..,,m = 1, 2, . .. ,M, 

provided that ys() - xoII s ChPs. It is supposed that cs = 1 and the (scalar) order 

is defined to be p - ps, which corresponds with the conventional definition of order 
of a Runge-Kutta method. 

We are concerned with linearly implicit methods where B1 is a lower triangular 
matrix and B2 is a strictly lower triangular matrix. That is, the (A, B1) method is a 
semiexplicit Runge-Kutta method, and the (A, B2) method is explicit. Since the 
(A, B1) method is to be A-stable, at least one diagonal element of B1 must be 
nonzero and, in particular, the possibility b55 + 0 is allowed. On the other hand, (1.2) 
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implies that b11 = 0. For a linearly implicit methody(m)= y(m-')and 
i i-I 

y(m) y(m-) + h J(M)(t + hc)yJ(m) + h Y f3jjg(m)(tm_l + hcj, y(m)), 
j=1 j=1 

for i 2, 3,... ,s and m = 1, 2, 3, .... At most s - 1 evaluations of g(m) are needed 
in step m. Suppose that the nonzero diagonal elements of B, are equal and that the 
elements of c, which correspond to these nonzero elements, are equal also. Then each 
step requires the LU factorization of one n X n matrix of the form 

I - hbJ(m)(tm_I + hc), 

and it is not necessary to evaluate J(m) at other points since 

J(m)(t)x =f(t, x) - g(m)(t, x), m = 1,2,3.... 

Nevertheless, it is usually more efficient to employ decompositions where the linear 
terms are independent of t because then there is a gain in efficiency when the same 
decomposition is used in successive steps. 

In the next section we give a number of linearly implicit (A, B1, B2) methods of 
Runge-Kutta type, where the (A, B1) method is A-stable. Such methods can be 
obtained with P = s - 1 where s - 4. When ps = 4, it is necessary to choose s = 6 
but only four evaluations of {g(m)} are required. 

In the third section we establish a stability result for such methods applied to 
perturbed linear systems of differential equations. Consider the initial value problem 

x' = Jx + g(t, x), x(a) = xo, t > a, 

where the eigenvalues of J have negative real parts and where IH g(t, u)HI = o(Hl u H1). 
That is, it is assumed that 

jjg(t, u)jj P(11u11)H V11 u E RS, t > a, 

where 4 is continuous and 4(O) = 0. It is known [5, p. 274] that there is an E > 0 
such that if II xo I I , then IH x(t) I has limit zero. Now consider a linear implicit 
(A, B1, B2) method of Runge-Kutta type where the (A, B1) method is A-stable. 
Suppose that this method is used, with a fixed step length h, to integrate the initial 
value problem on [a, x), where the given decomposition is used throughout the 
numerical integration. For an arbitrary y5(O) the method gives a sequence {y5(m)}, and 
it is shown that there is a 8 > 0 such that if H ys() 1 ? 8, then the sequence { 1ys(m) } 
has limit zero. 

One problem with this result is that it is difficult to assess the effect of a 
perturbation. Another problem is that the result applies to a single decomposition 
where the linear part remains constant for the entire numerical integration. Numeri- 
cal results indicate that the methods are satisfactory for much more general 
sequences of decompositions. 

2. The Conditions for Order and A-Stability. In the article [2] the authors obtained 
order conditions for a general additive method. For additive Runge-Kutta methods 
the order of the last stage ps = p is of principal interest and the conditions given 
below refer to this stage alone. The order of convergence of other stages may be 
determined after the method has been obtained. 
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It is convenient to express the order conditions in terms of 

S 

bi(a) = Cc'?-a bijcj?-lS 

i = 1,2, ... ,s,u 1,2,3,..., 
gi(a) = Ci?- a 2 gijCj?-, i j~a- 

j=l 

where the assumption (1.2) gives 

(2.1) bi(l) = pi(l) = O, i = 1, 2,... ,s. 

Subject to this assumption, an additive Runge-Kutta method is of order p ? 4 if and 
only if 

(2.2.1) bs(u)=O, a?p, 
(2.2.2) /S(a) = O, a p, 

(2.3.1) zbsici 
T bi(ff) = ?, f + T <P, 

(2.3.2) zbsicT-'fli(u) = O, a + T p, 

(2.3.3) cTi-1 cbi(u) = 0, u + T p, 

(2.3.4) i h d simpli(a) = O, a + T b, 

(2.4.1) absi bijmbj (2)A= B, p =m4, 

(2.4.2) b( isbijAs jl(2) = t, p = 4, 

(2.4.3) 1bepin ij bj (2)d= O, p = 4, 

(2.4.4) e ebsisl.ijs5(2) = 0o p = 42 

(2.4.5) tsibbieobr (2) = ms p = 4s 

(2.4.6) A asi bibiji(2) = 0t p = 4t 

(2.4.7) Plsifl3ij bj(2) = ?, p = 41 

(2.4.8) P/si /3ij/3 (2) = ?, p = 4, 

where a andTstake all possible positive integer values, and where each summation is 
from I to s. These conditions simplify greatly when P3si = bsi, i = 11 2S ... I,s. 

The aim is to obtain linearly impticit (A, Bs, B2) methods of Runge-Kutta type, 
where the (A, BI) method is A-stable. Since the (A, B2 Nmethod is a conventional 
s-1I stage explicit Runge-Kutta method, the order of such an additive method 
cannot exceed s -1. If s > 5, the other cannot exceed s -2. The conditions for the 
additive method to be of order p s s-1I must be satisfied together with conditions 
for A -stability. 

Necessary and sufficient conditions for a semiexplicit Runge-Kutta method to be 
A-stable have been given by the authors [3] and by Norsett [6]. We give these 
conditions for an (A, B1) semiexplicit Runge-Kutta method, where at least one 
diagonal element of B1 is zero, in terms of parameters ao, al, a2,..., and Po, #I I 
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B2, .... Let 3rS r r=O, 1, 2,..., be defined by 

S 

II (I-Tbrr) = -Tgl + T2*2 
r=1 

so that P0 = I and Ps P=/s+= *I 0. Let el, e2,.... es be the natural basis for 1I 
and let e = e l + e2 + + es be the vector with unit elements. The terms 

esTB Ire, r=1, 2, 3,.... 

are the sums of the elements in row s of B, B2, B3,..., and for a method of orderp 
it is known that 

(2.5) esTBre - r! r= 1,2,...,p. 

Now define as = as+? I - 0 and 

(2.6) a =Pr - Ir-le[TBe + - + ( 1) roes[B re, r = O, 1,. . .,s- 1, 

so that a0 1. Then a method of order p is A-stable if and only if brr 0 0 for 
r= 1,2,...,sand 

s-I r 
I yr2* (_-1)r?j(12r113P 

- a 2 r j)a 
0 Vy : 0, 

r=zr j=O 

where r is the integral part of p72 + 1 and the asterisk denotes that the terms with 
j = r are halved. 

Some low order cases are considered now. In these cases p = s - 1 so that 
a0, a1, a2, ... are completely determined by the diagonal elements of Bl. These 
elements are chosen so that the A-stability conditions are satisfied. The remaining 
elements of B1 and B2 are obtained by satisfying the order conditions. 

For p - 2 the A-stability conditions can be satisfied when BI has just one nonzero 
diagonal element b, and for p = 1 it suffices that b > 1/2. The order conditions give 
the methods represented by the array 

1 0 0 0 0 0 

1 1-b b 1 0 1 

When p = 2 it is necessary to choose b = 1/2. The order conditions give, in 
particular, the methods 

2 0 0 0 0 0 0 0 

2 2 0 0 2 0 0 2 tL#O. 

21 1 2 1 
2 

1 
0 - _ - 0 1 

2 2 
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When p = 3 the A-stability conditions imply that B1 must have at least two nonzero 
diagonal elements. Suppose that these two elements are equal to b. Then the stability 
conditions are satisfied only if b is the larger root of 6b 2- 6b + 1, and the order 
conditions may be solved to give, in particular, the methods 

3 0 0 00 0 0 0 O O 

2 2 b 0 0 | 2 0 
I-L ~~~3 0 3 

2 8 - 3+9b - 12bt I - 3b b 0 8p -3 1 2 
2 b 0 

l2 4 0 0 - 
1 3-4k ol 1 3-4o 

3 j?L 0 t 01 

where b = (3 + V3)/6 and,t # 0. - 

Now consider the case where p = 4 and s > 5. Suppose that B, has at most two 
nonzero diagonal elements so that /3 /3B = = 0. Then the conditions for 
A-stability can be satisfied only if a3 a4 0. But it follows from (2.5) and 
(2.6) that 

a3 =:2 + 2/31- 6' a4 = 2 6- 6/3 +24 

and the stability conditions cannot be satisfied because the diagonal elements of B1 
are real. Now suppose that s - 5 and that BI has at least three nonzero diagonal 
elements. Then it may be shown that the order conditions cannot be satisfied. (The 
details are not given here but are available on request.) That is, when p = 4 and 
s = 5, there is no linearly implicit (A, B1, B2) method of Runge-Kutta type where 
the (A, B1 ) method is A-stable. 

Suppose that p = 4 and s = 6, and suppose that B1 has exactly three nonzero 
diagonal elements so that /4 = /5 = ... = 0. Then the (A, BI) method is A-stable if 
and only if the diagonal elements of B1 are nonnegative, a4 = a5 = ... = 0, and 
32 a 2. Let the three nonzero diagonal elements be equal to b. Then the condition 

a4 = 0 gives 24b3 - 36b2 + 12b - 1 = 0, but 32 ~> a3 only when b is the largest 
root b= 1.06857902130.... By definition as = as+, =-- 0, so that the only 

stability condition still to be satisfied is a5 O. It follows from (2.5) and (2.6) that 

this is equivalent to the condition 

1 1 
11 e6 Be=2 93 - 6 :2 + 24 #I,S 

which must be satisfied together with the order conditions. Although a variety of 

methods can be obtained, the arrays 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1- 2b b 0 0 0 
1 1 

2 2 2 

3 4 
1- 4b 

b 0 00 - - 
0 0 0 0 

0 
4 4 4 4 2 

3 1 b I- 6b b 0 0--Go0 0 0- 
4 2 4 4 4 2 

1 -6b -8b2 4b 
3 0 -2b 1 4b I -4b 0 0 0 -1 0 2 0 0 1 

4 6 ? O 
2 1 

? 
1 2 1 2 

6 ? I 
6 3 6 6~-0- 3--O 
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4 0 0 0 0 00 0 0 0 0 0 0 0 
1 -2b I 2 I-2 b 0 22 

1 I-6b+ 8b2 2b(2b) 1 1 
2 2 b202 

2 b I ~- 2b I- 6b bI 2 b 4 4 b 000 ?2 ? 00OO 

2 2 
3 ? 2 2 1-2b 0 0 O O O I O O I 

4 1 1 1 1 0 1 1 0 1 1 1 4 
61 3 ? 

3 6 6 3 3 6 

where b = 1.06857902130..., give two methods which are particularly efficient. 
These methods require just four evaluations of {g(m)} and, in this respect, are 
comparable with explicit Runge-Kutta methods of order four. Each step requires the 
LU factorization of one n X n matrix. 

3. A Stability Property. In this section we establish a stability result for linearly 
implicit (A, Bl, B2) methods of Runge-Kutta type, where the (A, B,) method is 
A-stable. It is likely that the result holds also when the methods are not linearly 
implicit. 

The result deals with the behavior of a method when applied to a stable linear 
perturbed system of differential equations. Let x be the particular solution of the 
system 

x' = Jx + g(t, x), t > a, 

which has the initial value x(a) = xo. The solution u = 0 of the linear system 
u' = Ju is exponentially stable [5, p. 113] if and only if Re A < 0 for all A E A[J], 
where A[J] is the spectrum of J. Now suppose that the trivial solution of u' = Ju is 
exponentially stable and that II g(t, u)II = o(II u I1). Then it is known [5, p. 274] that 
the trivial solution of u' = Ju + g(t, u) is also exponentially stable. In particular, 
this implies that there is an e > 0 such that if I xo II < e, then 11 x(t)II has limit zero. 

Suppose that an (A, Bl, B2) Runge-Kutta method is used to integrate this stable 
perturbed differential system on [a, xo). The method gives, for a fixed positive step 
length h, 

s s 

yim =ym-l) +h 2b..Jy(m) + h 
rn/3jt-I 

1 
pcSy() 

j=1 j=1 

for i 1,2,... ,s, and m = 1, 2, 3,.... Suppose that the method is linearly implicit 
and that the (A, BI) method is A-stable. It will be shown that there is a 8 > 0 such 
that if II ys() II - 8, then the sequence { 11 y(m) II) has limit zero. 

With this end in view, and to introduce a matrix notation for the methods, 
consider column vectors in RN, where N = ns, of the form 

g(t + hcl, Yl) YS 

Y=|Y| G(t,Y)= g(+hc Y2) S 

YS-J ~~- g(t + hcs, ys [ S 
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where Yl, Y2,. .. ..s are column vectors in RW. For any r let I denote the r X r identity 
matrix. Let B X J be the tensor product of an arbitrary s X s matrix B -{bij} and 
an arbitrary n X n matrix J, 

bj1J bl2J ... bjsJ 
b21J b22J b2s J 

BX J= 

Lbslj bs2 J bJ 

Then an (A, B1, B2) Runge-Kutta method may be expressed in the form 

y(m) = y(m-l) + hB, X JY(m) + hB2 X IG(tm-i, y(m)), 

where Ys(') is given and Y(m) = A x IY(m), m = 1, 2, 3,.... Now suppose that the 
method is linearly implicit and that the (A, BI) method is A-stable. It will be shown 
that for some norm on RN there is a A > 0 such that if 1I Ys() 11 ,< A then the sequence 
{f l Y(m) 11 } is strictly decreasing and has limit zero. It follows that { ys() 11 has limit 
zero. 

THEOREM. Suppose that the trivial solution of u' = Ju is exponentially stable and let 
I Ig(t, u)II = o(I Iu Il). Suppose that the (A, B1, B2) Runge-Kutta method is linearly 
implicit and that the (A, B1 ) method is A-stable. For any fixed positive h and arbitrary 

ys(O), the method uniquely defines a sequence {ys(m)} where 

i i-1 

y(m) = y(m-l) + h ,bJy(m) + h E Aj3ig(tm-1 + hcj, YJm) ), 
j=l j=l 

for i ,2,.. . ,s, and m I , 2, 3,..., and there is a 8 > O such that if 1yS(0) 1< 8, 

then the sequence { ys() ) has limit zero. 

Proof. (i) Since the diagonal elements of B1 are nonnegative and since the 
eigenvalues of J have negative real parts, the matrices I- hbiiJ, i- l,2,. . . ,s, are 
nonsingular. Further, B2 is strictly lower triangular, so that the method uniquely 
defines the sequence {Y(m)} where Y(O) is given and 

y(m) = (I-hBi X J) 1 [Y(m-1 ) + hB2 X IG(tm-15y(m))], m = 1,2,3,.. 

We are concerned with the vectors 

(3.1) Y(m) = A X I(I-hBj X J)'[Ys(m-1) + hB2 X IG(tm_1 y(m))1] 

m 1,2,3,..., 

and, in particular, it has to be shown that 1A X I(I - hB X J)<- l1 - a < 1 for 
some norm. This is equivalent to showing that the spectral radius satisfies 

p[A X I(I - hBj X J)-'] < 1. 

To this end, suppose that the (A, B1) method is applied to the scalar initial value 
problem x' = Ax, x(O) = 1, where A is a constant. Since N = s, the method gives 

AY(m) = A(I - hXBj)1AY(m-1) m = 1,2,3,..., 

for a fixed positive step length h. Since the method is A-stable, p[A(I - hABB)- ] < 1 
for any A with Re A < 0. 
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The result is now obtained by transforming A X I(I - hBI X J) There is a 
permutation matrix P, depending only on s and n, such that PTB X JP = J X B for 
an arbitrary s X s matrix B and an arbitrary n X n matrix J. For given J there is a 
unitary matrix S such that SHJS = T a triangular matrix. Thus it has to be shown 
that p[M] < 1, where 

M=PTIXSHA XI(I-hB XJ IX XSXSP=IXA(I-hTXB1)'. 

Since M is block triangular and each diagonal block has the form A(I - hXB1) 
with X E AJI, it follows that p[M] < 1. 

(ii) For fixed t let U be defined as a function of Y, by 

T S '3@ J( d a;F 2 X 1 
- 

k.'7; U' 

It has to be shown that II G(t, U)I I o(II Ys I1) for any norm but, since norms on RN 
are equivalent, it suffices to show this for the particular norm 

|| Ull = max Iluill. 

For this norm it is clear that II G(t, U)Il = o(II U I1), so that it is sufficient to show 
that there are positive constants E and K such that if II Ys I s E, then l1 U I s K II Ys 11. 

That is, it has to be shown that if I IYs II s E, then II uI 1 K I Iys 1, where 
- i-l i-l 

ui = (I- hbiiJ)[ Ys + h bijJuj + h 2 fi3g(t + hcj, Ul) 1,2,...,s. 
j=l j=l 

Since I Ig(t, u)II = o(IIu I), for any positive L there is an e > 0 such that if llull s e, 
then 11 g(t, u)Il s L 11 u 11. Let K = cs- 1 where 

c = max jj(I-hbiiJ) 1ll I + hIbJ1 2 IbijI+ hL , 1,8ijI 

and c > I because b1I = 0. Choose E so that KE s e. It follows by induction that 
Ui 1 cI- I I ys 11, i = 1, 2,... ,s, and therefore II G(t, U)Il = o(Il Y 11). 
(iii) It follows from (3.1) that for some norm 

|| Ys(m)II a [|I Ys(mY-1)II + #111G(tm- 1 5 y(m) )II, m 1, 2, 3,..., 

where a = I A X I(l- hB1 X J)l- 1 < 1 and fi = h IIB2 X I11. Choose a so that 
a < a < 1 and consider some fixed value of m. Since IIG(tmil, Y(m))ll 
o(ll y(m-1) 11), there is a A > 0 such that if 11 Ys(m 1) s A, then 

|| G ftm- 1 y(m) )I <1 a a 
YS( ym- 1l ( a8 7# 0)~ 

and this gives 11 Y(m) 11 s al Ys(m- 1)11 so that 1Y(m) 11 < ?A. It follows that if 1)I Ys(?) I l, 
then the sequence { II ys(m) II) is strictly decreasing and has limit zero. 

This result has no direct practical application in the sense that it cannot be used to 
measure the effect of a perturbation. This is so even though the condition 11 g(t, u)ll 
= o(ll u Il) may be replaced by the conditions II g(t, u)ll LIt ul and h s H. (This 
implies that the numerical solution may be bounded when the solution of the 
differential system is unbounded.) More importantly, the theorem assumes the use of 
a single decomposition where the linear part remains constant throughout. It seems 
to be difficult to obtain a similar result for a system of the form x' = J(t)x + g(t, x). 
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As before, if the trivial solution of u' = J(t)u is exponentially stable and 11 g(t, u)II 
= o(II u II), then the trivial solution of u' = J(t)u + g(t, u) is exponentially stable. 
However, the stability property can no longer be characterized by simple conditions 
on the spectrum of J(t). Nevertheless, the theorem suggests that additive methods 
have a role to play in the solution of stiff problems. 

4. Numerical Results. Some numerical results are given to illustrate that the 
additive methods, obtained in this article, are stable in quite general situations. The 
results indicate that these methods may give competitive procedures for solving stiff 
problems. 

We give results for only one method, the additive Runge-Kutta method repre- 
sented by the array 

3 0 0 0 0 0 0 0 0 0 

2 
-V3 3 V3 2 

? 
2 

0 0 0 
2 

2 6 6 0 3 
5 + V3 I + V3 3 +V3 1 1 2 

12 4 6 6 2 3 

3 1 1 1 0 1 I I 0 1 
4 4 2 44 20 

This method was applied to various systems x' = f(x) using the sequence of 
decompositions given by 

f(x) = J( x + g(m)(x), m 1, 2,3..., 

where {j(m)} is the Jacobian of f evaluated at the sequence of computed values 
{ym -1)}_ 

Consider the stiff initial value problem, given by Gear [4], 

XI -0.013x1 - 1000x1x3, Xl(0) 1, 

-2500x2x3, X2(0) 1, 

X3= --.013x1 -1000XIX3 -2500X2X3, X3(0) = 0, 

where the Jacbian has real eigenvalues. Table 1.1 gives some typical values of these 
eigenvalues. This problem was integrated using a step length h = 0.1, and Table 1.2 
compares the numerical results obtained, at t =1 and t = 50, with the (rounded) 
solution values. 

TABLE 1.1 
Eigenvalues of the Jacobian 

t = 0 t =25 t = 50 

0 0 0 
-0.0093 -0.0069 -0.0088 
- 3500 -3287 -4104 



ADDITIVE RUNGE-KUTTA METHODS FOR STIFF ODE s 217 

TABLE 1.2 
Comparison of results ( h = 0.1 ) 

t=1 t = 50 

Exact Numerical Exact Numerical 

xi 0.990 731 92 0.990 731 89 0.597 654 70 0.597 654 66 
x2 1.009 264 41 1.009 264 50 1.402 343 41 1.402 343 44 
X3 -0.000 003 67 -0.000 003 61 -0.000 001 89 -0.000 001 89 

We also give a second set of results, obtained with h = 1, for another system given 
by Gear [4], 

X1 = -55x1 + 65X2 - X1X3, X1(0) = 1, 

X2 = 0.0785(X -X2), X2(0) = 1, 

X3 = 0.1x1, X3(0) 0 ?, 

where the Jacobian has complex eigenvalues. Typical values of the eigenvalues are 
given in Table 2.1. Table 2.2 compares numerical results obtained with the solution 
values. For both problems the results given are the rounded values obtained after 
computation with 12 significant digits. Results for other methods are similar. 

TABLE 2.1 
Eigenvalues for the second problem 

t=0 t=300 t =500 

0.0062 + 0.01 i 0.0014 + 0.014 i -0.015 
0.0062 - 0.01 i 0.0014 - 0.014 i -0.004 

-55 -63.5 -81 

TABLE 2.2 
Results for the second problem (h = 1) 

t = 10 t = 500 

Exact Numerical Exact Numerical 

xi 1.360 591 81 1.356 753 78 88.926 078 46 88.925 900 60 
x2 1.152 32104 1.152 322 69 87.276 035 35 87.275 999 91 
X3 0.036 059 18 0.035 675 38 8.792 607 85 8.792 590 06 

A number of comparisons have been made with semiexplicit Runge-Kutta meth- 
ods. These methods require the use of a modified Newton iteration where, in each 
step, the Jacobian is kept constant throughout the iteration. For both types of 
method, the Jacobian was evaluated at the start of each step. When only one 
iteration per step is used the semiexplicit methods require about the same amount of 
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computation as the additive methods but are less accurate. When more iterations are 
used the methods seem to be slightly more accurate than the additive methods but 
require more computation. 
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